Refraction of Light

 REFRACTION

Refraction of Light: The bending of light at the interface of two different mediums is called Refraction of light.

  • If the velocity of light in medium is more, then medium is called optical rarer.
    Example, air or vacuum is more optical rarer.
  • If the velocity of light in medium is less, then medium is called optical denser.
    Example, glass is more denser than air.

Refractive Index: It represents the amount or extent of bending of light when it passes from one medium to another.
There are two types of refractive index

  • Relative refractive index and
  • Absolute refractive index.

Refractive index of medium with respect to other medium is called Relative Refractive Index.
Refractive index of medium 1 with respect to medium 2 = Speedoflightinmedium2(V2)Speedoflightinmedium1(V1)

Refractive index of medium with respect to air or vacuum is called Absolute Refractive Index.
Absolute refractive index of medium (m) = Speedoflightinair(c)Speedoflightinmedium(Vm)

Incident ray: It is incoming ray on the refracting surface.

Refracted ray: It is an outgoing ray from the refracting surface.

An angle of incidence (i): It is the angle between incident rays and perpendicular line (normal) at the point of incidence.

An angle of refraction (r): It is the angle between refracted rays and perpendicular line (normal) at the point of incidence.

Law of Refraction: According to this law

  • “The incident ray, refracted ray and normal at the point of incidence all lie in the same plane.”
  • “The ratio of the sine of the angle of incidence to the sine of the angle of refraction is constant.”
    sinisinr = constant (µ)

Lens: The transparent refracting medium bounded by two surfaces in which at least one surface is curved is called lens.
Lenses are mainly two type

  • Convex lens and
  • Concave lens.

Center of Curvature: The centres of two spheres, of which lens is part is called the centre of curvature.

Radii of Curvature: The radii of spheres, of which lens is part is called radius of curvature.

Principal Axis: The line joining the centres of curvature of two surfaces of lens is called principal axis.

Optical Center: It is a special point on the principal axis. Light incident on the optical centre passes through the lens without deviation.

Principal Focus: The point on the principal axis at which all incident rays parallel to the principal axis converge or appear to diverge after refraction through the lens.

Special Rays for Image Formation by Lens:

  • An incident ray, parallel to the principal axis, after refraction passes through (or appears to come from), second focus of the lens.
  • An incident ray, passing through the optical center of the lens, goes undeviated from the lens.
  • An incident ray, passing through the (first) principal focus of the lens, or directed toward it, becomes parallel to the principal axis after refraction through lens.

Use of Lens: In photographic cameras, magnifying glass, microscope, telescope, the human eye.



32. The bending of light when it travels from one medium into another is called refraction of light

33.
light-reflection-and-refraction-cbse-notes-for-class-10-science-5

34. As light travels from ,one medium to another, the frequency of light does not change.

35. Light refracts because it has different speeds in different media.

36. The refraction of light obeys the following two laws :

  • The incident ray, the refracted ray and the normal at the point of incidence all lie in the same plane.
  • The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant.This
    constant is called the index of refraction or refractive index.
    light-reflection-and-refraction-cbse-notes-for-class-10-science-6

37. If wng is the refractive index of glass w.r.t. water, ang  be the refractive index of glass w.r.t. air and anw  be the refractive index of water w.r.t. air ,then
light-reflection-and-refraction-cbse-notes-for-class-10-science-7

38. The most familiar and widely used optical device is the lens. A lens is an optical system with two refracting surfaces. The simplest lens has two spherical surfaces close enough together that we can neglect the distance between them. Such a lens is called a thin lens. The two common types of lenses are Converging lens or Convex lens, Diverging lens or Concave lens.

39. It should be noted that, if the above lenses are surrounded by .a material with a refractive index greater than that of the lens, the convex lens gets converted into a concave lens and vice-versa.

40. Any lens that is thicker at its centre than at its edges is a converging lens with positive f, and any lens that is thicker at its edges than at the centre is a diverging lens with negative f.

41. Optical centre : The central point C in the lens is called the optical centre. If a ray is incident towards the optical centre, it passes undeviated .through the lens.
light-reflection-and-refraction-cbse-notes-for-class-10-science-8

42.Principal axis: Since the lens contains two spherical surfaces, therefore, it has two centres of curvatures.
The line joining these centres and passing through the optical centre is called principal axis.

43. Aperture: The effective width of a lens through which refraction takes place is called the aperture.

44. Focus and Focal Length : If a beam of light moving parallel to the principal axis of a convex lens is incident on it, the rays converge or meet at a point on the principal axis. This point F is called the focus. The distance CF is called the focal length. If a beam of light moving parallel to the principal axis is incident on a concave lens, the beam of light diverges. If these diverged rays are produced backward, they meet at a point F on the principal . axis. The transmitted rays appear to come from this point. This point F is called the focus and distance CF is called the focal length.

45. For drawing the ray diagrams, we note the following :
light-reflection-and-refraction-cbse-notes-for-class-10-science-9
light-reflection-and-refraction-cbse-notes-for-class-10-science-10

  • All rays parallel to the principal axis after refraction pass through the principal focus or seem to come from it.
  • A ray of light passing through the focus after refraction becomes parallel to the principal axis.
  • A ray of light passing through the optical centre of the lens after refraction passes undeviated.

46. A convex and a concave lens can be supposed to be made-up of prisms.

47. Image formation by a concave lens.
light-reflection-and-refraction-cbse-notes-for-class-10-science-11

48. Image formation by a convex lens.
light-reflection-and-refraction-cbse-notes-for-class-10-science-12

49. New Cartesian sign conventions :

  • All distances, object distance (u), image distance (v) and focal length f are measured from the optical centre.
  • The distances measured in the direction of incident ray are taken as positive and distances measured against the direction of incident ray are taken as negative.
  • All distances (heights) of objects and images above principal axis are taken as positive and those below the principal axis are taken as negative.

50. For the two lenses, the sign conventions take the form

  • u is- ve, if the object is in front of the lens. (Real object)
  • u is +ve, if the object is virtual.
  • v is – ve, if the image is on the same side as that of the object. (Virtual image )
  • v is +ve, if the image is real.
  • Focal length of a concave lens is taken as – ve.
  • Focal length of a convex lens is taken as +ve.

51. Lens formula for convex lens 1/v-1/u = 1/f

52. The linear magnification produced by a lens is defined as the ratio of the size of the image (h’) to the size of the object (h). It is represented by m i.e.,
light-reflection-and-refraction-cbse-notes-for-class-10-science-13

53. If the magnification of a lens is negative, then the image formed is inverted and real.

54. If the magnification of a lens is positive, then the image formed is erect and virtual.

55. Power is defined as the reciprocal of the focal length. Power is measured in dioptre.

56. Power = 1/ f (Focal length in meters)

1 comment:

  1. these notes are pasted from the internet. sir please can you put down your own notes



    ReplyDelete